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Abstract

Given time-dependent ground motion recordings at a number of receiver stations,
we solve the inverse problem for estimating the parameters of the seismic source. The
source is modeled as a point moment tensor source, characterized by its location,
moment tensor components, the start time, and frequency parameter (rise time) of its
source time function. In total, there are 11 unknown parameters. We use a non-linear
conjugate gradient algorithm to minimize the full waveform misfit between observed
and computed ground motions at the receiver stations.

An important underlying assumption of the minimization problem is that the wave
propagation is accurately described by the elastic wave equation in a heterogeneous
isotropic material. We use a fourth order accurate finite difference method, developed
in [12], to evolve the waves forwards in time. The adjoint wave equation corresponding
to the discretized elastic wave equation is used to compute the gradient of the misfit,
which is needed by the non-linear conjugated minimization algorithm.

A new source point moment source discretization is derived that guarantees that
the Hessian of the misfit is a continuous function of the source location. An efficient
approach for calculating the Hessian is also presented. We show how the Hessian can
be used to scale the problem to improve the convergence of the non-linear conjugated
gradient algorithm. Numerical experiments are presented for estimating the source
parameters from synthetic data in a layer over half-space problem (LOH.1), illustrating
rapid convergence of the proposed approach.

1 Introduction

This article presents a computational technique for estimating the location, start time,
magnitude, and other parameters that describe the source in a seismic event, such as an
earthquake, a mine implosion, or an explosion. Our approach is based on using seismo-
graphic ground motion recordings together with large scale simulations to estimate the
parameters describing the seismic source.

∗Center for Applied Scientific Computing, L-422, LLNL, P.O. Box 808, Livermore, CA 94551, USA.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

1



We consider seismic source estimation as a minimization problem constrained by the
elastic wave equation subject to appropriate boundary and initial conditions. Our ob-
jective of the source estimation is to minimize the difference between the recorded and
simulated wave forms. We assume that ground motion observations are recorded at the
fixed spatial locations xr, r = 1, . . . , R, and that three orthogonal components of the dis-
placement are measured as functions of time at all recording stations, denoted by dr(t). Let
u(x, t) be the displacement field governed by the elastic wave equation. The displacement
field depends implicitly on the source parameters, which we collect in the Q-dimensional
vector p. The continuous minimization problem is defined through the misfit functional

Xc(p) =
1

2

R
∑

r=1

∫ T

t=0
s(t) |u(xr, t) − dr(t)|2 dt, (1)

where s(t) > 0 is a weight function and |u| denotes the magnitude of the vector u. Note
that the misfit is a non-negative real scalar functional of u, which accounts for differences
between the time-dependent wave forms u(xr, t) and dr(t) in the time interval 0 ≤ t ≤ T .
Hence, Xc = 0 implies perfect agreement between the wave forms at all recording stations,
i.e., u(xr, t) = dr(t) for 0 ≤ t ≤ T and r = 1, 2, . . . , R.

We will minmize the full waveform misfit functional (1) by gradient based optimization,
where the gradient is efficiently computed by solving the adjoint problem. This is a
technique that has gained popularity for seismic inverse problems in recent years. For
a recent example see [16], where both the material inversion and the source inversion
problems are addressed. In [16], the the elastic wave equation is solved by a spectral
element method. The adjoint problem is formulated for the PDE and is discretized by the
spectral element method.

A number of alternative techniques for source estimation exist and are being used for
seismic source inversion and material inversion. The different methods can be character-
ized by three different aspects: how the misfit is defined, how the synthetics are produced
(i.e., how u in (1) is approximated), and the exact algorithm used for the minimization of
the misfit.

Traditionally, the inverse problem in seismology is solved by minimizing the misfit
between observed and computed arrival times. For an example of this approach, see [13],
where both the source inversion and the material inversion problems are addressed. [15]
gives a comparison of different misfit functionals, and show some source inversion results.
When full waveforms are not used in the misfit, the computation of the solution of the full
elastic wave equation is often replaced by ray tracing, or by a geometrical optics (JWKB)
approximation. See [1] for a recent example of material inversion based on ray tracing and
the so called double-difference traveltime misfit.

The full waveform misfit (1) is difficult to match with good accuracy when the source
inversion is made with a material model that is not accurate enough. To compensate
for imperfect modeling when working with measured data, it is often necessary to intro-
duce windowing functions in the misfit, that only select a certain part of the measured
seismograms, see [16].

For optimization, direct search methods, i.e., minimization algorithms that do not use
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the gradient information have also been used to solve the inverse problem in seismology,
e.g., the downhill simplex method was used in [11]. See [14] for a review of direct search
minimization algorithms. In the same spirit are methods that make use of source-receiver
reciprocity to efficiently compute the misfit functional for a large number of different source
locations, see [6]. Although these methods are more robust, they tend to require more
computational work if the solution is required to high precision.

Optimization methods that make use of both the gradient and the Hessian (or an
approximate Hessian), such as Newton and quasi-Newton methods have been successfully
used for the inverse problems, see, e.g., [4] for electromagnetic scattering and [10] for re-
sistivity imaging in oil exploration. These methods are made efficient by use of Broyden’s
update, and might be considered also in seismic source inversion, although, the current
study concludes, that with a good preconditioning the non-linear conjugate gradient min-
imization can be just as efficient as a quasi-Newton method.

We assume that the displacement field u(x, t) satisfies the elastic wave equation in
the three-dimensional domain Ω, subject to initial and boundary conditions. Here, the
boundary is denoted Γ = Γ1 ∪ Γ2. The displacement is governed by

ρutt = ∇ · τ (u) + f(x, t;p), x ∈ Ω, 0 ≤ t ≤ T,

u(x, 0) = 0, x ∈ Ω, t = 0,

ut(x, 0) = 0, x ∈ Ω, t = 0,

n · τ (u) = 0, x ∈ Γ1, 0 ≤ t ≤ T,

u = 0, x ∈ Γ2, 0 ≤ t ≤ T,

(2)

where ρ(x) is the density. We further assume that earth can be described as a heteroge-
neous isotropic elastic material. The stress tensor τ (u) is then related to the displacement
gradient through

τ (u) = λdiv(u) I + µ (∇u + ∇uT ), (3)

where λ(x) and µ(x) are the first and second Lamé parameters of the material.
The function f in (2) models the seismic source. For smaller seismic events, it can be

modeled by a point moment tensor source,

f(x, t;p) = g(t)M∇δ(x − x∗). (4)

Here, ∇δ(x) is the gradient of the Dirac distribution. The source time function g(t) =
g(t; t0, ω0) is assumed to depend on two parameters; a time shift t0 and a frequency
parameter ω0. The source is located at x∗ = (x∗, y∗, z∗) and the elements of the symmetric
matrix M are denoted

M =









m(xx) m(xy) m(xz)

m(xy) m(yy) m(yz)

m(xz) m(yz) m(zz)









.

Under these assumptions the forcing function f depends on Q = 11 parameters,

p = (x∗, y∗, z∗, m
(xx), m(xy), m(xz), m(yy), m(yz), m(zz), t0, ω0). (5)
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The continuous source estimation problem can be stated as the constrained mimization
problem

minXc(p), u satisfies (2) with forcing f(x, t;p).

Unfortunately, the elastic wave equation can not be solved analytically except in highly
idealized situations, such as when the free surface boundary is flat and the material has
homogeneous properties. For this reason, we discretize the elastic wave equation by a
fourth order accurate finite difference method and solve it numerically. This allows us
to account for general heterogeneous material properties and also make our approach
extendable to realistic topographies.

The outline of this article is as follows. Section 2 describes the fourth order accurate
finite difference discretization, developed in [12], and derives its adjoint discretization. The
adjoint property, proved in Sec. 2, is used in Sec. 3 to derive formulas for the gradient and
Hessian of the discrete misfit. Section 4 develops a new spatial discretization of the singu-
lar source function (4). This discretization is designed to be compatible with fourth order
accuracy and be twice continuously differentiable with respect to its postion, x∗. Section 5
describes the initial guess used for the iterative minimization algorithm. The initial guess
is obtained by minimizing the arrival time misfit, using ray tracing. In Sec. 6, we per-
form numerical experiments with the complete source inversion algorithm for a synthetic
problem. We investigate how different scaling strategies affect the convergence rate of the
minimization algorithm, and demonstrate excellent performance. Finally, conclusions are
given in Sec. 7.

2 The discretized problem

2.1 A self-adjoint fourth order accurate finite difference scheme

Consider the elastic wave equation (2) on the rectangular domain (x, y, z) ∈ [0, xmax] ×
[0, ymax] × [0, zmax], and the time interval 0 ≤ t ≤ T . Let the computational grid be

xi = (i− 1)h, yj = (j − 1)h, and zk = (k − 1)h,

where h > 0 is the grid size and i, j, and k are integers in the ranges i ∈ [0, Nx + 1],
j ∈ [0, Ny + 1], and k ∈ [0, Nz + 1]. The domain sizes are chosen such that xNx = xmax,
yNy = ymax, and zNz = zmax. The points with i = 0, i = Nx +1, j = 0, j = Ny +1, k = 0,
or k = Nz + 1 are ghost points that are used to impose boundary conditions. Time is
discretized on the grid tn = n∆t, where ∆t > 0 is the fixed time step, and n = 0, 1, . . . ,M .
The time step is chosen such that tM = M∆t = T .

The numerical approximation of the displacement vector u(x, t) at grid point (i, j, k)
and time level tn is denoted by un

i,j,k = (un
i,j,k, v

n
i,j,k, w

n
i,j,k). To improve readability, we

occasionally supress the subscript or superscript on u, for example by writing un for
un

i,j,k. When convenient we also use the vector index notation i = (i, j, k) to indicate a
spatial grid point index.
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In [12], we developed a fourth order accurate symmetric discretization of the divergence
of the stress tensor (3). This operator, denoted by Lh(u), has the property that

(v,Lh(u))h = (Lh(v),u)h, (6)

for any two grid functions u and v that satisfy the discretized boundary conditions

B(u)i,j,k = 0, xi,j,k ∈ Γ. (7)

The scalar product in (6) is defined by

(v,u)h = h3
Nz
∑

k=1

Ny
∑

j=1

Nx
∑

i=1

ai,j,k〈vi,j,k,ui,j,k〉,

where ai,j,k are positive weights determined from the summation by parts property of
Lh(u) that is needed to enforce (6). Also, 〈u,v〉 =

∑3
q=1 u

(q)v(q), is the inner product
between real-valued vectors with three components. Using this notation, the magnitude
of u satisfies |u|2 = 〈u,u〉.

We consider boundary operators B that either discretize free surface or Dirichlet
boundary conditions,

B(un)i,j,k =

{

B(un)i,j,kni,j,k, Free surface,

un
i,j,k, Dirichlet.

Here, B(u) is a special difference approximation of the stress tensor on the boundary that
matches Lh(u)i,j,k such that the overall discretization becomes stable. The vector ni,j,k

is the outward boundary normal. A detailed description of the interior and boundary
discretizations can be found in [8, 12].

We discretize the elastic wave equation (2) using the fourth order accurate differ-
ence method described in [12]. This method computes the displacement field un, n =
1, 2, . . . ,M , according to Algorithm 1. Note that the grid function F(t;p) in this algo-
rithm represents a discretization of the singular source term f(x, t;p). This discretization
will be described in detail in Section 4. The operator SG(u) is a damping operator, used
in a supergrid sponge layer near artificial non-reflecting boundaries. SG(u) is consistent
with

−γh4∆t

(

(σ(x)(x)uxxt)xx + (σ(y)(y)uyyt)yy + (σ(z)(z)uzzt)zz

)

,

where γ is a constant that controls the strength of damping. The scalar, non-negative,
taper functions σ(x), σ(y), and σ(z) are non-zero only in the sponge layers, where they
increase from 0 to 1 in the outward direction through the layer. The domain is terminated
at the artificial boundary by a homogeneous Dirichlet boundary condition, enforced on
the approximation such that the symmetric property

(v,SG(u))h = (SG(v),u)h (8)

holds, and such that the discrete energy is positive and non-increasing. In the supergrid
layer, the material properties ρ, λ, and µ are artificially tapered, such that the compres-
sional and shear wave speeds are smoothly reduced to small values near the boundaries of
the layer. The super grid boundary condition, its discretization, and the proof of (8), will
be given in [].
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Algorithm 1 4th order accurate predictor-corrector scheme for the elastic wave equation.

1: procedure Forward(u,F)
2: Initial conditions: u0 = 0 and u−1 = 0

3: for n = 0, 1, . . . ,M − 1 do

4: Predictor step:

u∗ = 2un − un−1 +
∆2

t

ρ

(

Lh(un) + F(tn;p)
)

5: Impose boundary condition (7) on u∗ to define its ghost point values
6: Acceleration: vn =

(

u∗ − 2un + un−1
)

/∆2
t

7: Corrector step:

un+1 = u∗ +
∆4

t

12ρ

(

Lh(vn) + Ftt(tn;p)
)

+ SG(un − un−1)

8: Impose boundary condition (7) on un+1 to define its ghost point values
9: end for

10: end procedure

2.2 The discrete source estimation problem

A straight forward generalization of the continuous formula (1) leads to the discrete misfit
functional

X (p) =
1

2

R
∑

r=1

M−1
∑

n=0

s(tn)|un
ir
− dr(tn)|2. (9)

As in the continuous problem, s(tn) > 0 is a weight function. We assume that all recording
stations coincide with grid points, i.e., xr = xir for some vector index ir = (ir, jr, kr).
Furthermore, the observed displacements dr(t) are assumed to have already been filtered
in time such that they only contain motions that can be captured on the computational
grid.

Similar to the continuous case, the displacement at the recording stations depends
implicitly on the parameter vector p in the discretized forcing function F. Hence, the
discrete source estimation problem can be stated as the constrained minimization problem,

minX (p), un is calculated by Algorithm 1 with forcing F(tn;p).

Given the source parameters p, we can use Algorithm 1 to calculate the solution of the
elastic wave equation, which then can be inserted into (9) to evaluate the discrete misfit
X (p).

2.3 The adjoint wave equation

An efficient approach for computing the gradient of the misfit uses the adjoint wave field,
κn

i . Let the source term in the adjoint equation be G(tn). The adjoint wave field satisfies
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the adjoint of the discretized elastic wave equation. A method for calculating κ is given
in Algorithm 2.

Algorithm 2 The adjoint scheme for the elastic wave equation.

1: procedure Adjoint(κ,G)
2: Terminal conditions: κM−1 = 0 and κM = 0

3: for n = M − 1,M − 2, . . . , 1 do

4: Predictor step:

κ∗ = 2κn − κn+1 + ∆2
t

Lh(κn)

ρ
(10)

5: Impose boundary condition (7) on κ∗ to define its ghost point values
6: Compute acceleration: ζn =

(

κ∗ − 2κn + κn+1
)

/∆2
t

7: Corrector step:

κn−1 = κ∗ +
∆4

t

12

Lh(ζn)

ρ
+

∆2
t

ρ
G(tn) − SG(κn+1 − κn), (11)

8: Impose boundary condition (7) on κn−1 to define its ghost point values
9: end for

10: end procedure

The adjoint property is made precise in the following theorem.

Theorem 1. Let F (with second time derivative Ftt) be the source term in the discretized
elastic wave equation, and use Algorithm 1 to calculate u. Furthermore, let G be the source
term in the adjoint wave equation and use Algorithm 2 to calculate κ (with acceleration
ζ). Then the grid functions u and κ are adjoint in the sense that

M−1
∑

n=0

(Gn,un)h =

M−1
∑

n=0

(

κn,Fn +
∆2

t

12
Fn

tt

)

h

+
∆2

t

12

M−1
∑

n=0

(ζn,Fn)h . (12)

Proof: See Appendix A.

3 Minimizing the misfit

We use a preconditioned Fletcher-Reeves method to minimize the discrete misfit. This
technique generalizes the conjugate gradient method to non-quadratic problems, see,
e.g., [7]. The preconditioning corresponds to a change of variables, p̂ = Sp, where S
is a non-singular matrix. The change of variables is introduced to improve the conver-
gence properties of the Fletcher-Reeves algorithm. We first formulate the minimization
algorithm in the scaled variables, and then transform it back to the original variables. The
resulting algorithm with m restarts, and where the parameter vector p has Q components
is given in Algorithm 3. The algorithm terminates after all restarts have been completed,
or when the maximim norm of the scaled gradient is smaller than the tolerance θ ≪ 1. In
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practice we usually set θ = 10−12. Note that the algorithm is given for a general precon-
ditioning matrix S. When S is diagonal, STS = S2. The Fletcher-Reeves algorithm uses

Algorithm 3 The preconditioned Fletcher-Reeves method. Here, ∇Xk = ∇X (pk).

1: procedure Precond-Fletcher-Reeves(p0)
2: for r = 1, 2, . . . ,m do

3: Initial search direction: q0 = −(STS)−1∇X (p0)
4: for k = 0, 1, . . . , Q− 1 do

5: Line search: find steplength αk that minimizes X (pk + αkqk)
6: Next parameter vector: pk+1 = pk + αkqk

7: Compute βk:

βk =
∇X T

k+1(S
TS)−1∇Xk+1

∇X T
k (STS)−1∇Xk

8: Next search direction: qk+1 = −(STS)−1∇X (pk+1) + βkqk

9: if ||S−1∇Xk+1||∞ < θ then

10: p0 = pk+1

11: return
12: end if

13: end for

14: Initial guess for next outer iteration p0 = pQ

15: end for

16: end procedure

the gradient of the misfit with respect to the components of the parameter vector p. It is
defined by

∇X (p) =

(

∂X
∂p1

,
∂X
∂p2

, . . . ,
∂X
∂pQ

)T

.

In section 3.1, we will discuss an efficient approach for calculating all components of the
gradient by solving one adjoint wave equation.

The convergence properties of the Fletcher-Reeves algorithm depend on the properties
of the scaled Hessian matrix, with elements Ĥi,j = ∂2X/∂p̂i∂p̂j . In matrix notation, we
have

Ĥ = S−THS−1, Hi,j =
∂2X
∂pi∂pj

,

where H is the unscaled Hessian. Superscript T denotes transpose. The minimization
algorithms is not guaranteed to converge unless the Hessian matrix is well defined, i.e.,
the misfit function must be twice continuously differentiable with respect to p. It is
straightforward to see that the displacement field depends linearly on the matrix elements
of M. Hence u and thereby X are infinitely differentiable with respect to the elements of
M. We will assume that the time function depends on t0 through a time shift g(t; t0, ω0) =
g̃(t− t0;ω0). Because the source term F enters into the finite difference scheme with two
time derivatives (see Algorithm 1), a requirement for the Hessian to be defined is that
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g̃(t;ω0) is four times differentible with respect to t and twice differentiable with respect
to ω0. In this article, g̃ is assumed to have this regularity. The spatial discretization and
regularity of the moment tensor source with respect to its location, x∗ will be described
in section 4.

A crucial component of the preconditioned Fletcher-Reeves algorithm is the line search
algorithm, i.e., to minimize X (pk +αqk) with respect to the step length α. In our imple-
mentation, we use a backtracking algorithm called A6.3.1 in [3], with the minor modifica-
tion that the full step is pk + αsqk, instead of pk + qk, as assumed in [3]. The full step
size αs is taken from the linear conjugated gradient algorithm, which assumes that X (p)
is a quadratic function of p,

αs = −∇X T
k qk

qT
kHkqk

, (13)

In our case, the Hessian is evaluated at pk, i.e., Hk = H(pk). In section 3.2, we present
an algorithm for evaluating qT

kHkqk that only requires one additional wave equation to be
solved. In most iterations of the Fletcher-Reeves algorithm, the full step length αs yields
an acceptable approximation of the minima in the line search. Hence, the backtracking is
rarely invoked. The “typical x” vector, needed in backtracking algorithm A6.3.1 (see [3]),
is taken as the inverse of the diagonal elements of the scaling matrix S.

3.1 The gradient of the misfit

Straightforward differentiation of (9) gives

∂X
∂pj

=
R

∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir
− dr(tn),

∂un
ir

∂pj

〉

. (14)

Note that the material properties ρ, µ, and λ do not depend on pj . By differentiating
the difference scheme for u with respect to pj , we see that ∂u/∂pj could be calculated
with the same finite difference scheme as used for computing u, if the source term F is
replaced by ∂F/∂pj . However, to compute the gradient of X with this technique, it would
be necessary to solve the elastic wave equation with 11 different forcing functions, where
each forcing corresponds to one component of ∂X/∂pj .

A more efficient way of computing the gradient of the misfit is based on solving the
adjoint wave equation. In this approach, we define the adjoint source in (11) as

Gn
i =

R
∑

r=1

s(tn)
(

un
ir
− dr(tn)

)

δi,ir/(h
3ai), (15)

where

δi,j =

{

1, i = j,

0, otherwise.

Inserting (15) into (14) shows that the gradient of the misfit can be written

∂X
∂pj

=
M−1
∑

n=0

(

Gn,
∂un

∂pj

)

h

.
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Because ∂u/∂pj satisfies the forward finite difference scheme with source term ∂F/∂pj ,
we can apply Theorem 1 to obtain

∂X
∂pj

=

M−1
∑

n=0

(

κn,
∂Fn

∂pj
+

∆2
t

12

∂Fn
tt

∂pj

)

h

+
∆2

t

12

M−1
∑

n=0

(

ζn,
∂Fn

∂pj

)

h

. (16)

Equation (16) allows us to compute all components of the misfit gradient from the adjoint
wave field κn

i . The scalar products with the gradients of F can be assembled during the
adjoint solve, which imposes a negligible computational cost compared with the cost of
solving the discrete elastic wave equation.

3.2 Calculating the Hessian and qT
Hq

The Hessian matrix plays an important role in gradient based optimization. For example,
the condition number of the Hessian governs the convergence rate of the conjugate gradient
algorithm, and the Hessian can be used to construct a preconditioner.

To compute the Hessian, we differentiate (14) with respect to pk to obtain

Hk,j :=
∂

∂pk

(

∂X
∂pj

)

=

R
∑

r=1

M−1
∑

n=0

s(tn)
∂

∂pk

〈

un
ir
− dr(tn),

∂un
ir

∂pj

〉

=

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

∂un
ir

∂pj
,
∂un

ir

∂pk

〉

−
R

∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir
− dr(tn),

∂2un
ir

∂pj∂pk

〉

. (17)

We decompose the Hessian into two parts, H = H(1) −H(2), where

H
(1)
j,k :=

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

∂un
ir

∂pj
,
∂un

ir

∂pk

〉

, (18)

H
(2)
j,k :=

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir
− dr(tn),

∂2un
ir

∂pj∂pk

〉

. (19)

By noting the similarities between (14) and (19), we see that the matrix H(2) can also be
computed using the adjoint κ. We arrive at the formula

H
(2)
j,k =

M−1
∑

n=0

(

κn,
∂2Fn

∂pj∂pk
+

∆2
t

12

∂2Fn
tt

∂pj∂pk

)

h

+
∆2

t

12

M−1
∑

n=0

(

ζn,
∂2Fn

∂pj∂pk

)

h

, (20)

corresponding to (16), but where the first derivative of the source term is replaced by its
second derivative. Hence, we can obtain H(2) by accumulating addititional scalar products
with κn. Therefore, the computation of H(2) does not require any additional solutions of
the elastic wave equation. However, to compute H(1) it is necessary to solve 11 elastic
wave equations, to obtain the individual terms ∂un

i /∂pj corresponding to the source terms
∂F/∂pj . These grid functions are then used to form H(1) directly, according to (18).
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The higher computational cost of the Hessian makes it prohibitively expensive to eval-
uate at each iteration in Algorithm 3. However, as we will see below, it is highly advan-
tageous to compute the Hessian at least once, and use it as a preconditioner throughout
the iterations.

The step length calculation (13) for αs requires the computation of the scalar quantity
qTHq, where q is a vector with Q = 11 components. As before, we decompose the Hessian
into H = H(1) −H(2). The second term, qTH(2)q, is directly available by evaluating H(2)

as described above. For the first term, we note that

qTH(1)q =

Q
∑

j=1,k=1

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

qj
∂un

ir

∂pj
,
∂un

ir

∂pk
qk

〉

.

Let ũn
i denote the solution obtained by solving the discretized elastic wave equation with

the source term
∑

j qj
∂F(tn)

∂pj
. It then holds that ũn

i =
∑

j qj
∂un

i

∂pj
, and hence,

qTH(1)q =
R

∑

r=1

M−1
∑

n=0

s(tn)
〈

ũn
ir
, ũn

ir

〉

,

can be assembled during the time stepping for calculating ũn. Hence, the additional
cost for calculating qTHq amounts to solving one elastic wave equation. This is the
same computational cost as for estimating the step length by an approximate difference
quotient, such as that used in [5].

4 Discretizing the singular source term

The gradient of the Dirac distribution in the seismic source term (4) can discretized based
on the discretization of a one-dimensional Dirac distributions δ(x− x∗) and its derivative
δ′(x− x∗). For all smooth, compactly supported functions of one variable ϕ(x), we have

∫

ϕ(x)δ(x − x∗) dx = ϕ(x∗)

∫

ϕ(x)
dδ

dx
(x− x∗) dx = −dϕ

dx
(x∗). (21)

Our approach is based on the technique in [9], which approximates the singular sources
numerically by grid functions that satisfy (21) in a discrete scalar product for all poly-
nomial functions up to order q > 0, leading to q + 1 moment conditions. The required
order is related to the order of accuracy in the approximation of the differential equation.
Because we use gradient based optimization to solve for the source location, the source
term discretization must be twice continuously differentiable with respect to x∗. As a
result, the moment conditions must be augmented by additional continuity conditions.

For a fourth order scheme, the moment conditions for δ should be satisfied for the
functions ϕ(x) = xk, k = 0, . . . , 3, and the moment conditions for δ′ should be satisfied
for k = 0, . . . , 4. Details are given in [9]. To make the technique easier to implement, we
use discretizations that satisfy the moment conditions for k = 0, . . . , 4, both for δ and δ′.
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We describe the discretization of δ and its derivative in one space dimension. The
multi-dimensional approximation can be obtained in a straightforward way by Cartesian
products of the one dimensional discretizations. Let the one-dimensional grid be xj = jh,

j = 0, . . . , N + 1, and define the scalar product by (u, v)h1 = h
∑N

j=1 ujvj . Furthermore,

let b̃(x∗, js)j denote a preliminary approximation of δ(x − x∗), which is centered at grid
point js. The five moment conditions

(

xk, b̃
)

h1
= (x∗)

k, k = 0, . . . , 4, (22)

can be satisfied by using five non-zero coefficients in b̃(x∗, js). We choose a compact stencil
that is zero for j < js−2 and j > js+2. The same grid points are used for source locations
at |x∗−xjs | < h/2. Within this interval, the source discretization is infinitely differentiable
with respect to the source location, since the coefficients depend on the source location
through the right hand side of (22), which consists of polynomials in x∗. However, if
x∗ = xjs + h/2 + ε, the stencil will be centered around grid point xjs for ε < 0, but
around grid point xjs+1 for ε ≥ 0. Unfortunately, the coefficients are not continuously
differentiable at ǫ = 0.

To obtain a source discretization that has two continuous derivatives with respect to
the source location, we use a smoothly weighted average of the five point stencils centered
at js and js + 1, respectively. We locate the averaged source discretization on the grid by
choosing the index js such that

xjs ≤ x∗ < xjs+1, i.e., x∗ = xjs + νh, 0 ≤ ν < 1.

We have ν = (x∗ − xjs)/h and define the blending function

ψ(ν) =











0, ν < 0,

10ν3 − 15ν4 + 6ν5, 0 ≤ ν < 1,

1, ν ≥ 1.

The function ψ(ν) is monotonically increasing for 0 ≤ ν < 1 and has two continuous
derivatives at the break points ν = 0 and ν = 1. The averaged source discretization is
then defined as the six point stencil

b(ν, js) = (1 − ψ(ν)) b̃(x∗, js) + ψ(ν)b̃(x∗, js + 1), 0 ≤ ν < 1, (23)

which obviously is continuously differentiable in 0 ≤ ν < 1. Note that the coefficient in
front of b̃(x∗, js) goes to zero as ν → 1, and the coefficient in front of b̃(x∗, js +1) vanishes
as ν → 0.

Away from the source, b(ν, js)j = 0 for j < js − 2 or j > js + 3. To verify that the
source discretization is a continuous function of the source location, consider the limiting
case ν → 1. Continuity means that the grid function centered at js with ν = 1 is identical
to the grid function centered at js + 1 with ν = 0, i.e.,

b(1, js)j = b(0, js + 1)j .
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Since b(0, js)j only depends on js through the index j, we have b(0, js + 1)j = b(0, js)j−1.
The same argument holds for the continuity of any derivative of b with respect to the
source location. Hence, the grid function b and its first two derivatives are continuous
functions of x∗ if

∂kb

∂νk
(1, js)j =

∂kb

∂νk
(0, js)j−1, k = 0, 1, 2. (24)

Note that the grid function b satisfies the moment conditions (22) because both b̃(x∗, js)
and b̃(x∗, js + 1) satisfy those conditions. After some algebra, we find that the coefficients
in the six point stencil (23) are given by

b(ν, js)js−2 =
1

h

(

1

12
ν − 1

24
ν2 − 1

12
ν3 − 19

24
ν4 + P (ν)

)

, (25)

b(ν, js)js−1 =
1

h

(

−2

3
ν +

2

3
ν2 +

1

6
ν3 + 4ν4 − 5P (ν)

)

, (26)

b(ν, js)js =
1

h

(

1 − 5

4
ν2 − 97

12
ν4 + 10P (ν)

)

, (27)

b(ν, js)js+1 =
1

h

(

2

3
ν +

2

3
ν2 − 1

6
ν3 +

49

6
ν4 − 10P (ν)

)

, (28)

b(ν, js)js+2 =
1

h

(

− 1

12
ν − 1

24
ν2 +

1

12
ν3 − 33

8
ν4 + 5P (ν)

)

, (29)

b(ν, js)js+3 =
1

h

(

5

6
ν4 − P (ν)

)

, (30)

where

P (ν) =
5

3
ν5 − 7

24
ν6 − 17

12
ν7 +

9

8
ν8 − 1

4
ν9.

Symbolic formula manipulation software (or another tedious calculation) can be used to
verify that the continuity conditions (24) are satisfied by the above grid function.

Let g(js, ν)j denote the grid function approximating the derivative of the Dirac dis-
tribution, δ′(x − x∗). Following the same approach as above, we arrive at the six point
stencil

e(ν, js)js−2 =
1

h2

(

− 1

12
+

1

12
ν +

1

4
ν2 +

2

3
ν3 +R(ν)

)

, (31)

e(ν, js)js−1 =
1

h2

(

2

3
− 4

3
ν − 1

2
ν2 − 7

2
ν3 − 5R(ν)

)

, (32)

e(ν, js)js =
1

h2

(

5

2
ν +

22

3
ν3 + 10R(ν)

)

, (33)

e(ν, js)js+1 =
1

h2

(

−2

3
− 4

3
ν +

1

2
ν2 − 23

3
ν3 − 10R(ν)

)

, (34)

e(ν, js)js+2 =
1

h2

(

1

12
+

1

12
ν − 1

4
ν2 + 4ν3 + 5R(ν)

)

, (35)

e(ν, js)js+3 =
1

h2

(

−5

6
ν3 −R(ν)

)

. (36)

13



Here, the polynomial R is given by

R(ν) = −25

12
ν4 − 3

4
ν5 +

59

12
ν6 − 4ν7 + ν8,

and e(ν, js)j = 0 for j < js − 2 or j > js + 3.
It can be verified that the grid function e satisfies the moment conditions for a fourth

order accurate discretization of δ′(x− x∗),

(1, e)h1 = 0 (xk, e)h1 = −k(x∗)k−1 k = 1, . . . , 4,

and is twice continuously differentiable with respect to the source location x∗, i.e., satisfies
continuity conditions corresponding to (24).

5 Estimating initial source parameters

Figure 1 shows an example of contour levels of X in two planes of the 11-dimensional
parameter space, where the remaining nine parameters are held at their minimizing values.
This example is taken from the layer over half space problem called LOH.1 that is described
in section 6. The minimum is clearly visible at x∗ = y∗ = 15000 and z∗ = 2000. Gradient
based minimization algorithms assume that the objective function is close to quadratic in
parameter space. Figure 1 shows that this assumption only holds close to the minima,
and several local minima can be distinguished in the figure. To make the minimization
algorithm converge to the global minima, it follows that the initial parameter guess must
be fairly accurate. We proceed by describing an approach for establishing initial parameter
values for the source estimation problem.

5.1 Initial estimate for the source location and start time

Our initial estimate for the source location is based on first arrival times. Assume that the
first wave arrives at time tr at receiver location (xr, yr, zr). If the material has homoge-
neous properties with compressional wave velocity cp, the travel time from source location
(x∗, y∗, z∗) to receiver ’r’ satisfies

T̂r(x∗, y∗, z∗) =
1

cp

√

(xr − x∗)2 + (yr − y∗)2 + (zr − z∗)2.

The source starting time, t∗, is related to the first arrival time, tr, through T̂r(x∗, y∗, z∗)+
t∗ = tr. Hence, we consider

Ir(x∗, y∗, z∗, t∗) := T̂r(x∗, y∗, z∗) + t∗ − tr = 0, r = 1, . . . , R. (37)

Each receiever results in one equation for the four unknowns (x∗, y∗, z∗, t∗). To determine
the unknowns, we need at least four receievers. Usually, we have more than four receivers
and (37) becomes an overdetermined system, which can be solved in the least squares
sense using the Gauss-Newton method.
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Figure 1: Contour plots of X as function of the source location for the LOH.1 problem.
Top: X (x∗, z∗) for y∗ = 15000. Bottom: X (x∗, y∗) for z∗ = 2000. All other parameters
are held at their correct values.
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The first arrival time at receiver r is defined as the smallest value of tm for which

|um
ir
| > ηmax

n
|un

ir
| or |vm

ir
| > ηmax

n
|vn

ir
|or |wm

ir
| > ηmax

n
|wn

ir
|, 0 < η ≪ 1, (38)

i.e., the earliest time for which the amplitude of any component of the signal reaches a
fraction of its peak value. In the numerical experiments below we use η = 10−6.

If the material is not homogeneous, the above procedure can still be applied if cp is
replaced by an appropriate average of the compressional wave speed. However, we have
found that such an approach can be sensitive to the value of cp. In some cases it even
makes the Gauss-Newton iteration diverge. For heterogeneous materials, a better approach
is to estimate the initial source position by ray tracing, which takes the variable material
properties into account. We here describe the approach for a layered material model.
Consider a material with piecewise constant compressional wave speed in m horizontal
layers, depending only on the depth below the free surface,

cp(z) =























c1, 0 ≤ z < z1,

c2, z1 ≤ z < z2,

· · ·
cm, zm−1 ≤ z ≤ zmax.

Assume that the source is located at (x∗, y∗, z∗) with zn−1 < z∗ < zn, and that the
receiver is located at (xr, yr, 0). The piecewise linear path between source and receiver
with break points at (xi, yi, zi), i = 1, . . . , n− 1 has the travel time

Tr =

n
∑

i=1

ξi
ci
, ξi =

√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2,

where we set the start and end points of the ray to (x0, y0, z0) = (xr, yr, 0) and (xn, yn, zn) =
(x∗, y∗, z∗), respectively. The travel time is a function of the locations of the break points
(xi, yi, zi), i = 1, . . . , n−1. Since zi are fixed, the ray from source to receiver is determined
by the values of (xi, yi) that minimize Tr.

At the minimum, ∂Tr/∂xi = 0 and ∂Tr/∂yi = 0, for i = 1, 2, . . . , n− 1. This results in
the system

A(x,y)x = r(1), A(x,y)y = r(2), (39)

where x = (x1, . . . , xn−1), y = (y1, . . . , yn−1), and the matrix A is tridiagonal. Note that
equation (39) is non-linear, because A depends on x and y. We have found that (39) can
be solved by the fix point iteration

A(xk,yk)xk+1 = r(1), A(xk,yk)yk+1 = r(2), k = 0, 1, . . . .

The iteration converges quickly, at least for cases where the number of layers is moderate.
By solving the above minimization problem, we can calculate the minimum travel time

from the source to receiver ’r’, which we denote by T̂r. Clearly, it is a function of the source
location, and similar to the case with a homogeneous material, we have T̂r = T̂r(x∗, y∗, z∗).
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As before, we can determine the source location by solving (37) for the unknowns
(x∗, y∗, z∗, t∗). We assume R > 4, which makes (37) an overdetermined system. The
Jacobian of (37) is needed by the Gauss-Newton method. Here we approximate the
derivative of Ir with respect to the source location by numerical differentiation, i.e.,

∂Ir
∂x∗

≈ T̂r(x∗ + h̃, y∗, z∗) − T̂r(x∗, y∗, z∗)

h̃
,

for a small fixed number h̃. The y∗- and z∗-derivatives are computed similarly. Thus when
solving (37) by the Gauss-Newton method, we must solve (39) four times per iteration.

5.2 Estimating the source frequency

It has turned out to be difficult to automatically estimate the source frequency, ω0. For
this reason, we require an initial guess for ω0 to be provided by the user. However, in
practice this might not be a serious problem, because in realistic applications the observed
ground motions must be filtered in time to remove waves that can not be resolved on the
computational grid. This is a preprocessing step that is performed before the optimiza-
tion is started. The corner frequency of the filter is then related to the effective source
frequency.

5.3 Initial estimate for the moment tensor

Once initial estimates for the source location, frequency, and starting time are established,
we can use the linearity of the elastic wave equation to estimate the matrix M in the source
term (4). Let u(xx), u(xy), u(xz), u(yy), u(yz), and u(zz) denote solutions of the elastic wave
equation with the matrix M set to









1 0 0

0 0 0

0 0 0









,









0 1 0

1 0 0

0 0 0









,









0 0 1

0 0 0

1 0 0









,









0 0 0

0 1 0

0 0 0









,









0 0 0

0 0 1

0 1 0









,









0 0 0

0 0 0

0 0 1









,

respectively. The solution for a general M is then obtained as the linear combination

w(mxx,mxy,mxz,myy,myz,mzz) :=

mxxu
(xx) +mxyu

(xy) +mxzu
(xz) +myyu

(yy) +myzu
(yz) +mzzu

(zz).

The elements of M are determined by minimizing the wave form misfit

X =
1

2

R
∑

r=1

M−1
∑

n=0

s(tn)
∣

∣wn
ir

(mxx,mxy,mxz,myy,myz,mzz) − dn
ir

∣

∣

2
. (40)

Because w is linear in mij , X is a quadratic function of mij. Its minimum can be computed
directly by solving the 6 × 6 linear system ∂X/∂mij = 0.
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6 Numerical experiments

To verify our implementation and gain understanding of the performance of the suggested
approach, we conduct numerical experiments on synthetic data. In this approach we first
run the forward problem once with a given source and use the resulting time histories at
the receiver stations as ’measured’ data. In this way, the exact solution is known, and we
can easily assess the convergence properties of the minimization algorithm.

A standard test problem for elastic wave modeling is the layer over halfspace problem
called LOH.1, [2]. In this test, a point moment tensor source with a Gaussian time function
is applied in a layered isotropic elastic material. The Gaussian time function,

g(t; t0, ω0) =
ω0√
2π
e−ω2

0
(t−t0)2/2,

is parameterized by the frequency ω0 and the center time t0. The material velocities are
cp = 4000 and cs = 2000 in a top layer extending over 0 ≤ z ≤ 1000, with cp = 6000
and cs = 3464 for z > 1000. The densities are ρ = 2600 in the top layer and ρ = 2700
for z > 1000. The computational domain in the standard LOH.1 problem is a box of
size 30000 × 30000 × 17000. In order to make the computations run faster, we reduce the
depth of the computational domain from 17000 to 8500, but keep the thickness of the top
layer unchanged. All computations use the grid spacing h = 120 and the wave equation
is integrated to time T = 9. The spatial grid has 4.5 million points.

In the following numerical experiments, the ’exact’ source is located at x∗ = y∗ =
15000, z∗ = 2000, with moments mxy = 1018, mxx = mxz = myy = myz = mzz = 0. The
Gaussian time function has t0 = 1.45 and ω0 = 6.0. To allow for a coarser grid spacing
than what normally is used when solving the LOH.1 problem, we have reduced the value
for the frequency parameter ω0 to give a similar resolution in terms of grid points per
wavelength. The solution is recorded at 25 receiver stations placed on a 5×5 grid, at
xj,k = 9000 + (j − 1) ∗ 3000, yj,k = 9000 + (k − 1) ∗ 3000, and zj,k = 0, for j = 1, . . . , 5,
k = 1, . . . , 5.

The center time t0 in the Gaussian time function follows from the source start time t∗
as t0 = t∗ + tδ, where the rise time tδ satisfies

η =
ω0√
2π
e−(ω0tδ)2/2 ⇒ tδ =

1

ω0

√

−2 log((η
√

2π)/ω0).

Here, 0 < η ≪ 1 is the same constant that is used in (38) for estimating the first arrival
time.

The automated initial guess described in Section 5, with the user choice ω0 = 6.3,
resulted in the estimated source position x∗ = 14980.8, y∗ = 15039.5, z∗ = 2352.73, with
momentsmxx = 3.754×1014, mxy = 9.622×1017, mxz = −8.937×1015, myy = 3.758×1014,
myz = 4.351 × 1015, mzz = −5.313 × 1012, and t0 = 1.358. This estimate was computed
by solving (37) in the two-layer material above. It is a sufficiently good approximation to
make the Fletcher-Reeves algorithm converge to the exact minimum.

In our implementation of the source inversion algorithm, the user is given the choice
to input an initial parameter guess directly, or to have the solver estimate it. When a
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fairly accurate location of the source is known in some other way, it saves computational
time to use it directly. The computational cost of the automatic estimate is somewhat
high because the computation of the moment tensor components requires six elastic wave
equations to be solved, see Section 5.3. In some of the numerical experiments below, we
use the following initial parameter values:

x∗ = 16000, y∗ = 14000, z∗ = 2200, mxy = 1.2 · 1018,

mxx = mxz = myy = myz = mzz = 0, t0 = 1.54, ω0 = 6.3.
(41)

As long as the initial parameter guess is reasonably close to the actual minimum, our
practical experience is that the number of iterations required to reach convergence is not
sensitive to this choice.

6.1 Choosing the preconditioner

The sizes of the parameters in the source estimation probem span many orders of magni-
tude. In SI-units, x∗ is of the order O(104), the moment tensor components mxx, mxy, . . .
are of the order O(1015) − O(1018). The parameters t0 and ω0 are both of the order
O(1) − O(10). Because there is such a large difference in size between the smallest and
largest parameter values, the original minimization problem is very poorly scaled and the
condition number of the Hessian is a very large.

For optimal convergence of the Fletcher-Reeves algorithm, the parameters should be
scaled such that the Hessian at the solution has condition number one. The change
of parameters p̂ = Sp gives the scaled Hessian Ĥ∗ = (S−1)TH∗S

−1, i.e., the scaling
corresponding to Ĥ∗ = I satisfies

STS = H∗. (42)

Hence, S could be computed by a Cholesky factorization of H∗. However, H∗ is in general
not computable because it requires the solution of the minimization problem to be known.
Instead we can use a Cholesky factorization of the Hessian at the initial parameter guess.
Since this scaling is not optimal and the implementation of the scaled algorithm is more
straight forward when S is diagonal, we restrict us to this case. As we shall see, a significant
reduction of the condition number of the Hessian can still be acheived. When S is diagonal,
(42) can not be satisfied exactly. Instead we minimize the residual, ||H∗ − S2||F , which
gives Sjj =

√

Hjj, j = 1, . . . , Q, i.e., the scaling matrix should equal the square root
of the diagonal of the Hessian. The Hessian at the minimum is positive definite, which
implies that the diagonal elements of H∗ are positive. Since H∗ is not known until the
minimization problem has been solved, we define S as the square root of the diagonal of
the Hessian evaluated at the initial guess. One difficulty with this definition is that there is
no guarantee that the Hessian is positive definite at the initial guess. If there are negative
diagonal elements in the Hessian, we instead use the square root of the diagonal elements
of the matrix H1, see (18), evaluated at the initial guess. It is obvious from (18) that H1

always have non-negative diagonal elements. This approach has turned out to work well
in practice.
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The computation of the Hessian, which is described in Section 3.1, requires the elastic
wave equation to be solved 11 times. However, this computation only needs to be done
once, before the Fletcher-Reeves iteration starts.

6.2 Condition number of the scaled Hessian

Table 1 shows the influence of different scaling matrices for the LOH.1 source inversion
problem. The bottom row shows the condition number of the Hessian at the exact min-
imum, scaled by the given S. Here, the condition number was computed by the Matlab
function cond. The diagonal variable transformation p̂ = Sp implies that the inverse of
the diagonal elements of the scaling matrix correspond to reference sizes of the parameters.
However, only their relative sizes matter because multiplying S by a constant factor does
not change the condition number of the scaled Hessian.

The unscaled Hessian has condition number cond(H∗) = 4.73·1038 . The second column
of Table 1 shows the scaling obtained as the square root of the diagonal elements of the
Hessian, evaluated at the initial parameter guess (41). Not all diagonal elements of the
Hessian are positive at this point in parameter space. For this reason, only the first part
of the Hessian, H1, as described in Section 6.1 was used in this scaling. It is interesting
to note that the scaling obtained from the square root of the diagonal of the Hessian at
the minimum, shown in column three, leads to a slightly larger condition number. As
was mentioned above, the Hessian at the minimum is in general not computable because
this scaling assumes that the solution of the minimization problem is known. The fourth
column, labeled ref. sizes 1, shows the scaling based on estimated sizes of the parameters.
These numbers were based on the size of the domain, which is in the 10’s of kilometers,
and the fact that we know that t0 is of order O(1), ω0 = O(10), and the moment tensor
components are of the order O(1018). Table 1 shows that scalings based on the diagonal
elements of the Hessian give significantly smaller condition numbers compared with the
unscaled case and ref. sizes 1. After inspecting the Hessian based scalings, we modified
the reference size scaling to instead be 103 for the length scale, 1018 for the moment scale,
0.1 for the time scale, and 1 for the frequency scale. This scaling, given as ref. sizes 2
in Table 1, gave the much improved condition number 80.4. The last column of Table 1
shows a scaling that is in between ref. sizes 1 and ref. sizes 2, labeled ref. sizes 3. It lead
to a condition number close to that of ref. sizes 1, indicating how sensitive the condition
number is to the scaling matrix. Hence, even though it is possible to design a favorable
parameter scaling by order of magnitude arguments, it is very difficult to find the optimal
values. We conclude that using the Hessian for scaling the parameters is a much more
reliable way to acheive a small condition number.

6.3 Convergence rates

Figure 2 shows convergence properties of the Fletcher-Reeves algorithm for different scal-
ing matrices. These computations were run for up to a maximum of 10 restarts (m = 10
in Algorithm 3), with each restart cycle consisting of 11 inner iterations. The iteration is
terminated when the maximum norm of the scaled gradient of the misfit becomes smaller
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Hes., guess Hes., exact Ref. sizes 1 Ref. sizes 2 Ref. sizes 3

1/s1,1 (x∗) 10.8 11.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s2,2 (y∗) 10.8 11.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s3,3 (z∗) 12.2 20.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s4,4 (mxx) 2.68 · 1016 2.70 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s5,5 (mxy) 1.68 · 1016 1.65 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s6,6 (mxz) 1.39 · 1016 1.29 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s7,7 (myy) 2.67 · 1016 2.70 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s8,8 (myz) 1.39 · 1016 1.29 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s9,9 (mzz) 2.28 · 1016 1.85 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s10,10 (t0) 2.13 · 10−3 2.55 · 10−3 1.00 0.10 0.50

1/s11,11 (ω0) 5.65 · 10−2 6.24 · 10−2 10.0 1.00 5.00

cond(S−1H∗S
−1) 28.1 31.8 6.18 · 103 80.4 1.55 · 103

Table 1: Scaling factors and their influence on the condition number of the scaled Hessian.
The condition number of the unscaled Hessian is 2.77 · 1038

than 10−12, or when the maximum number of iterations is reached. The magenta curve
shows the convergence history when S is taken as the square root of the diagonal ele-
ments of H∗. Using the square root of the diagonal elements of the Hessian at the initial
guess, shown by the red curve in Figure 2, gives convergence in almost the same number
of iterations. The results plotted in cyan and blue colors were obtained with scalings
corresponding to the cases “ref. sizes 1” and “ref. sizes 2” in Table 1. The improvement
in convergence rate when switching from “ref. sizes 1” to “ref. sizes 2” is remarkable, and
prompted us to try the intermediate scaling labeled “ref. sizes 3”, shown in green color.

The Hessian based scalings always perform well, and the solution is obtained in 40-
50 iterations. The reference size scalings can be made almost as efficient, but are very
sensitive to the exact values in the scaling matrix. The convergence rate of the unscaled
method, shown in black, is very slow and should not be used in practical computations.
Figure 3 displays the evolution of the source parameters during the iterations with the
scaling computed from the Hessian at the initial guess. The left figure shows the source
position x∗, y∗, z∗ vs. the number of iterations. y∗ is offset by 1000 to distinguish it from
x∗ and z∗ is offset by 10000 to make it fit into the same plot. The circles to the right
of the curves indicate the exact value of the parameter. Similarly, the middle subplot of
Fig. 3 show the evolution of the six components of the matrix M, and the right subplot
shows the time shift and the frequency with an offset. It is clear that already after around
33 iterations (2 restarts with the Fletcher-Reeves algorithm), all parameter values have
converged in “picture” norm.
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Figure 2: Convergence of the misfit (left) and the maximum norm of the scaled gradient
(right) for the different scalings given in Table 1.
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Figure 3: Convergence of source parameters. Location (left), moment tensor components
(middle), and time shift and frequency (right).
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Figure 4: The (u, v,w) components of the solution at the receivers (x, y, z) =
(9000, 21000, 0) (left) and (x, y, z) = (9000, 12000, 0) (right) vs. time. Curves in red are
initial guesses and curves in black are converged solutions.

Figure 4 gives another illustration of the convergence process. The recorded ground
motions at the receiver stations, (x, y, z) = (9000, 21000, 0) and (x, y, z) = (9000, 12000, 0)
are displayed as functions of time. The red curves were computed with the initial param-
eter values (41). The curves plotted in black are the solutions at the minimum. Since
this example uses synthetic data, the converged results are identical to the observations,
modulus roundoff errors.

6.4 Computational cost

Each iteration of the Fletcher-Reeves algorithm requires a minimum of three elastic wave
equations and one adjoint wave equation to be solved. The minumum number of wave
equation solves holds if the line search algorithm accepts the initial step length, which is
usually the case. When the line search algorithm needs to perform step length reduction
(backtracking), each reduction incurs one additional solve of an elastic wave equation.

The number of wave equation solves are counted as follows. In each iteratation, the
computation of the misfit, its gradient, and part H2 of the Hessian can be obtained by
solving one elastic and one adjoint wave equation. The computation of the step length
(13) adds one more elastic wave equation to be solved, and the test for acceptance at the
initial step in the line search algorithm requires the solution of yet another elastic wave
equation.

Figure 3 shows that a highly accurate solution can be obtained after around 40 itera-
tions. Since the adjoint wave equation needs the same amount of computational work as
solving the elastic wave equation, this corresponds to approximately 160 solutions of the
elastic wave equation. The total computation times for the 60 iterations shown in Figure 3
was about 15 minutes using 256 cores of a Linux cluster of Intel Xenon processors.
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7 Conclusions

We have presented an algorithm for estimating the seismic source parameters from recorded
time dependent motions at a number of receiver stations. The solution of this inverse
problem is computed by minimizing the full waveform misfit using a non-linear conjugate
gradient method. The key freatures of the proposed technique are an adjoint discretiza-
tion of the fourth order accurate method in [12], a source discretization that leads to a
twice continuously differentiable misfit function, and a parameter scaling that makes the
minimization problem well conditioned. Numerical experiments with the LOH.1 problem
shows very good convergence rates of the proposed algorithm.

Several practical problems must be solved before we can apply our approach to es-
timate source parameters in realistic seismic events. Seismographic recordings must be
deconvolved and band-pass filtered to compensate for instrument response characteristics.
Furthermore, additional filtering of the recordings is often needed to remove frequencies
that can not be resolved on the computational grid. We are currently faced with the dif-
ficulty of incorporating the filters into the source inversion problem. Instead of applying
filters to the computed solution, we plan to filter the source time function. Because the
material properties do not depend on time, the elastic wave equation describes a linear
time-invariant system. Filtering the solution is therefore equivalent to using a filtered
source time function. As a result, the minimization problem will depend on only 10 pa-
rameters, since the frequency parameter is fixed by the filter.

Another interesting extension of the current approach is the inverse problem for esti-
mating the material wave speeds and density. One additional difficulty with this problem
is to find a suitable parameterization of the material. To limit the dimensionality of pa-
rameter space, we expect that some degree of smoothness must be imposed on the material
model, perhaps by using piecewise smooth basis functions. Preliminary computations in
two space dimensions with a very simple material parameterization have shown encourag-
ing results.

A Proof of Theorem 1

Proof. Expand the predictor into the corrector in Algorithm 1. Then rewrite the expres-
sion as

ρ
un+1 − 2un + un−1

∆2
t

= Lh(un) + F(tn) +
∆2

t

12

(

Lh(vn) + Ftt(tn)
)

+ SG(un − un−1). (43)

Next, take the scalar product of (43) and κn, and sum over time to obtain

M−1
∑

n=0

(κn, ρ
un+1 − 2un + un−1

∆2
t

)h =
M−1
∑

n=0

(κn,Lh(un))h

+

M−1
∑

n=0

(κn,F(tn) +
∆2

t

12
Ftt(tn))h +

∆2
t

12

M−1
∑

n=0

(κn,Lh(vn))h +

M−1
∑

n=0

(κn,SG(un − un−1))h.

(44)
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The sum on the left hand side of (44) can be rewritten

M−1
∑

n=0

(κn, ρ
un+1 − 2un + un−1

∆2
t

)h =
M−1
∑

n=0

(ρ
κn+1 − 2κn + κn−1

∆2
t

,un)h

+
1

∆2
t

(

(ρu−1,κ0)h − (ρu0,κ−1)h + (ρuM ,κM−1)h − (ρuM−1,κM )h
)

, (45)

where the initial data u0 = u−1 = κM = κM−1 = 0 make

M−1
∑

n=0

(κn, ρ
un+1 − 2un + un−1

∆2
t

)h =
M−1
∑

n=0

(ρ
κn+1 − 2κn + κn−1

∆2
t

,un)h.

The first sum on the right hand side of (44) is treated by the self-adjoint property,

M−1
∑

n=0

(κn,Lh(un))h =
M−1
∑

n=0

(Lh(κn),un)h

The third sum of the right hand side of (44) can be rewritten

(κn,Lh(vn))h = (Lh(κn),vn)h = (Lh(κn),
1

ρ
(Lh(un) + F(tn)))h =

(Lh(κn),
1

ρ
Lh(un))h + (Lh(κn),

1

ρ
F(tn))h

= (Lh(
1

ρ
Lh(κn)),un)h + (Lh(κn),

1

ρ
F(tn))h = (Lh(ζn),un)h + (ζn,F(tn))h (46)

The supergrid damping term is rewritten

M−1
∑

n=0

(κn,SG(un − un−1))h =

M−1
∑

n=0

(κn,SG(un))h

−
M−1
∑

n=0

(κn+1,SG(un))h − (κ0,SG(u−1))h + (κM ,SG(uM−1))h. (47)

The boundary terms are zero because of the initial data u−1 = κM = 0, and we use the
symmetry (8) to obtain

M−1
∑

n=0

(κn,SG(un − un−1))h =
M−1
∑

n=0

(κn − κn+1,SG(un))h = −
M−1
∑

n=0

(SG(κn+1 − κn),un)h

Collecting terms gives that (44) is equivalent to

M−1
∑

n=0

(ρ
κn+1 − 2κn + κn−1

∆2
t

,un)h =
M−1
∑

n=0

(Lh(κn),un)h +
M−1
∑

n=0

(κn,F(tn) +
∆2

t

12
Ftt(tn))h

+
∆2

t

12

M−1
∑

n=0

(Lh(ζn),un)h +
∆2

t

12

M−1
∑

n=0

(ζn,F(tn))h −
M−1
∑

n=0

(SG(κn+1 − κn),un)h. (48)
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Expanding the predictor (10) into the corrector (11) gives

ρ
κn+1 − 2κn + κn−1

∆2
t

= Lh(κn) + G(tn) +
∆2

t

12
Lh(ζn) − SG(κn+1 − κn). (49)

It is now straightforward to see, by comparing (48) and (49), that the identity (12) follows.
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